Limited-angle Multi-energy CT using Joint Clustering Prior and Sparsity Regularization

Huayu Zhang, Yuxiang Xing

Tsinghua University, University of Wisconsin-Madison

Huayu Zhang, Yuxiang Xing

- Introduction
- Methodology
- Experiments
- Summary

★ 圖 ▶ ★ 臣 ▶ ★ 臣

• Spectral (Multi-energy CT)

 \triangleright differentiates materials

▷ wide applications: extracting veins and kedney stones, detecting chemical elements (iodine, barium)

• Problems

- > The data required for reconstruction is multiplied
- \triangleright longer scan time, more cost, more dose

• Goal

- \triangleright Design an easy-to-implement scanning strategy
- ▷ Lower does, cost and acquisition/reconstruction time (less angular views)
- ▷ mitigate limited-angle artifacts

- Introduction
- Methodology
- Experiments
- Summary

Methodology Proposed data acquisition strategy: Multi-arc scan

Requirement: The angular coverage of all X-ray beams is no less than 180° plus fan beam angle.

Huayu Zhang, Yuxiang Xing

- Limited-angle problem:
 - ▷ violates data sufficient condition: 180° plus fan beam angle coverage
 - ▷ severe artifacts
 - bard to eliminate the artifacts using compressed sensing
- Solutions:
 - Independent reconstruction will unavoidablely encounter limited-angle artifacts.
 - Leverage the structural coherence of images at all energies
 - jointly reconstruct images at all energy channels

Combine the projection data from all energies to pre-reconstruct a prior image.

$$\mu_p = \underset{\mu}{\operatorname{arg\,min}} \|\mathbf{H}\mu - \mathbf{p}\|_2^2$$

where

$$\mathbf{H} = \begin{pmatrix} \mathbf{H}_1 \\ \mathbf{H}_2 \\ \vdots \\ \mathbf{H}_{N_E} \end{pmatrix} \qquad \mathbf{p} = \begin{pmatrix} \mathbf{p}_1 / \|\mathbf{p}_1\|_1 \\ \mathbf{p}_2 / \|\mathbf{p}_2\|_1 \\ \vdots \\ \mathbf{p}_{N_E} / \|\mathbf{p}_{N_E}\|_1 \end{pmatrix}$$

Each indpendent H_i is ill posed, but the combined H not.

Figure : Prior image

L. Shen and Y. Xing, Medical physics, 42(1): 282, 2015

Huayu Zhang, Yuxiang Xing

Solution:

Data fidelity + Regularization

Huayu Zhang, Yuxiang Xing

Limited-angle Multi-energy CT using Joint Clustering Prior and Sparsity Regularization

Solution:

Data fidelity + Regularization Prior + Sparsity

- Assumption:
 - 1. The number of tissues within the object is limited;
 - 2. Each tissue is spatially continuous;
 - 3. The pixels within one tissues share an identical value.
- Clustering:
 - k-means clustering on the prior image;
 - 2. choosing features $(x, y, \mu(x, y))$. (x, y): coordinates, $\mu(x, y)$: pixel values;
 - 3. The image is divided into k patches;
 - 4. These *k* patches keep some structural details.

Figure : Clustering

Construct a constraint from the clustering

- k patches: $\Omega_c = \{(x, y) \mid \text{labeled with } c\}, c = 1, 2, \dots, k.$
- construct a dictionary

$$\boldsymbol{\mu} = \boldsymbol{\Phi} \mathbf{a} = \sum_{c=1}^{k} a_c \varphi_c \tag{1}$$

where

$$\begin{split} & \mathbf{\Phi} = (\varphi_1, \varphi_2, \dots, \varphi_k) \in \mathcal{R}^{N \times k} \text{ dictionary matrix } \\ & \varphi_i \text{ basis vector (element)} \\ & \varphi_{ij} = \mathbf{I}_{i \in \Omega_j} = \begin{cases} 1 & i \in \Omega_j \\ 0 & i \notin \Omega_j \end{cases} \end{split}$$

Joint Clustering Prior and Sparsity Regularization (CPSR) model

$$\arg\min_{\mu} \frac{1}{2} \|\mathbf{H}\boldsymbol{\mu} - \mathbf{p}\|_{2}^{2} + \lambda \|W\boldsymbol{\mu}\|_{1} \quad s.t. \quad \boldsymbol{\mu} = \mathbf{\Phi}\mathbf{a}$$
(2)

Incorporates the structural constraint into general compressed sensing frame.

- ullet $\|oldsymbol{H}oldsymbol{\mu}-oldsymbol{p}\|_2^2$ linear projection model
- $||W\mu||_1$ sparse constraint. W denotes wavelet transform.
- $\mu = \Phi a$ structural constraint

Augmented Lagrangian Function:

$$L(\boldsymbol{\mu}, \mathbf{a}, \mathbf{z}, \mathbf{y}_1, \mathbf{y}_2) = \underbrace{\frac{1}{2} \|\mathbf{H}\boldsymbol{\mu} - \mathbf{p}\|_2^2}_{\text{fedility}} + \underbrace{\frac{\rho_1}{2} \|\boldsymbol{\mu} - \mathbf{\Phi}\mathbf{a} + \mathbf{y}_1\|_2^2}_{\text{structural constraint}} + \underbrace{\lambda \|\mathbf{z}\|_1 + \frac{\rho_2}{2} \|\mathbf{z} - \mathbf{W}\boldsymbol{\mu} + \mathbf{y}_2\|_2^2}_{\text{sparse constraint}}$$

Solution: Alternating direction method of multipliers (ADMM)

- Introduction
- Methodology
- Experiments
- Summary

- * 🗇 * - * 注 * - * 注

• Scan

- modality: Fan beam
- X-ray energies: 120kVp, 90kVp, 60kVp
- Projection data for each energy: 75 (views) × 320 (detectors)

• Reconstruction

- Image size: 256×256
- Clustering number: k = 100
- Reconstruction algorithm: OS-SART
- Sparse constraint: Total variation in wavelet space

Numerical experiments

Reconstruction results

- Complete Data: Independent reconstruction from 180° plus fan beam angle projection data
- OS-SART: Independent reconstruction using OS-SART + TV constraint from 75° angular coverage projection data.
- View 3: CPSR method from 75° angular coverage projection data.

Huayu Zhang, Yuxiang Xing

Numerical experiments

Impact of view selection on reconstruction

0.15

Compare results from different view configurations: Case 1: $V_{120kVp} = [0^{\circ}, 75^{\circ}]$ $V_{90kVp} = [120^{\circ}, 195^{\circ}]$ $V_{60kVp} = [240^\circ, 315^\circ]$ Case 2: $V_{120kVp} = [30^{\circ}, 105^{\circ}]$ $V_{90kVp} = [150^{\circ}, 225^{\circ}]$ $V_{60kVp} = [270^{\circ}, 345^{\circ}]$ Case 3: $V_{120kVp} = [60^{\circ}, 135^{\circ}]$ $V_{90kVp} = [180^{\circ}, 255^{\circ}]$ $V_{60kVp} = [300^{\circ}, 375^{\circ}]$

Numerical experiments

Impact of the clustering number on reconstruction

Huayu Zhang, Yuxiang Xing

- Assumption of identical pixel value within one cluster may be too strong.
- Our method is flexible and tolerates some variation within each cluster by assigning a weight on the prior structural constraint term.

- Introduction
- Methodology
- Experiment
- Summary

- Multi-energy CT scan and reconstruction [Shen and Xing 2015]
- Compressed sensing
 - 1. sparsity [Sidky, Kao, and Pan 2006; Sidky and Pan 2008]
 - 2. low rank[Gao et al. 2011]
- Limited-angle CT[Jin et al. 2012]
- Sparse dictionary learning[Cao and Xing 2013]

- Largely reduce the projection data required. From 180° plus fan beam angle to at least 75° .
- Design and implement a reconstruction approach using joint clustering prior and sparsity in wavelet space.
- Solve the limited angle problem by leveraging the coherence among all data at different energies.
- Our method enable flexible angular configuration and broaden spectral CT system design.

Thank you!

This work is supported by grants from the National Natural Science Foundation of China (No. 11275104 and 11435007). Thank Le Shen for his support and helpful discussions.

Main References

- Cao, Meng and Yuxiang Xing (2013). "Limited angle reconstruction with two dictionaries". In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE. IEEE, pp. 1–4.
- Gao, Hao et al. (2011). "Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)". In: *Inverse problems* 27.11, p. 115012.
- Jin, Xin et al. (2012). "Anisotropic total variation minimization method for limited-angle CT reconstruction". In: SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, pp. 85061C–85061C.
- Shen, Le and Yuxiang Xing (2015). "Multienergy CT acquisition and reconstruction with a stepped tube potential scan". In: *Medical physics* 42.1, pp. 282–296.
- Sidky, Emil Y, Chien-Min Kao, and Xiaochuan Pan (2006). "Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT". In: *Journal of X-ray Science and Technology* 14.2, pp. 119–139.
- Sidky, Emil Y and Xiaochuan Pan (2008). "Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization". In: *Physics in Medicine and Biology* 53.17, p. 4777. URL: http://stacks.iop.org/0031-9155/53/i=17/a=021.

イロト イポト イヨト イヨ