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ABSTRACT

Dual-energy CT (DECT) imaging has gained a lot of attenuation because of its capability to discriminate
materials. We proposes a flexible DECT scan strategy which can be realized on a system with general X-ray
sources and detectors. In order to lower dose and scanning time, our DECT acquires two projections data
sets on two arcs of limited-angular coverage (one for each energy) respectively. Meanwhile, a certain number
of rays from two data sets form conjugate sampling pairs. Our reconstruction method for such a DECT scan
mainly tackles the consequent limited-angle problem. Using the idea of artificial neural network, we excavate
the connection between projections at two different energies by constructing a relationship between the linear
attenuation coefficient of the high energy and that of the low one. We use this relationship to cross-estimate
missing projections and reconstruct attenuation images from an augmented data set including projections at
views covered by itself (projections collected in scanning) and by the other energy (projections estimated) for
each energy respectively.

Validated by our numerical experiment on a dental phantom with rather complex structures, our DECT is
effective in recovering small structures in severe limited-angle situations. This DECT scanning strategy can
much broaden DECT design in reality.
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1. INTRODUCTION

Dual energy Computed Tomography (DECT) was proposed in 1970s and now becomes increasingly popular
because of the development of X-ray detectors and the emergence of new system designs in X-ray imaging.
Free from the drawbacks of conventional CT such as beam hardening and limited contrast, DECT enables the
differentiation of materials, especially those with similar attenuation at certain energies.1 These features make
DECT of high diagnostic value. Now, DECT has many clinical applications such as in abdomen2 and pulmonary
diseases .3

Generally speaking, the number of data doubles when imaging at two energies. For example, a fan-beam CT
usually requires projection data over an angular range of 180◦ plus the fan angle (δfan). Therefore, a fan-beam
DECT needs at least two sets of 180◦+δfan projections. Different system designs for DECT have been applied in
practice. A dual-source DECT4 using two sets of sources/detectors simultaneously acquires projection data at
two energy spectra. An energy-dispersive DECT uses novel photon counting detectors with the ability of energy-
dispersive X-ray detection.5 A rapid-kVp-switching DECT scanner needs an X-ray source with the ability of
swift switching between two voltages.6 Obtaining high quality dual-energy images with these methods depends
heavily on advanced devices and increases cost. Recently, L. Shen et al7 proposed a segmental multi-energy CT
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(SegMECT) scan strategy which could easily implement DECT using a traditional scanner and detector with
only one step of change to its tube potential. It separates a 360◦ scan orbit into two parts. Low-energy X-ray
beams are applied in one part and high-energy X-ray beams in the other. It is obvious that less data acquisition
has a potential to reduce dose, cost, as well as acquisition and reconstruction time. The segmental DECT can
reduce the data requirement to half.

Dose has been a critical issue in X-ray imaging. People have devoted a lot of effort to reduce dose. One
typical way is less tube current. Reconstruction methods 8,9 have been published to improve reconstruction by
applying statistical models. Limited view angle could be another way to cut down dose. However, it needs the
support of appropriate reconstruction methods. Normally, when the angular coverage of a fan beam scan are less
than 180◦ plus the fan angle, the reconstruction violates data sufficient condition.10,11 Reconstruction images
will suffer from artifacts caused by the limited angle. Smaller the angular coverage, more severe the artifacts. In
Shen’s method, the total angular range covered by the dual-energy X-ray beams has to be more than 180◦ plus
a fan angle so that a reasonable prior can be built to guide the reconstruction. In this work, we would like to
explore the possibility of further reducing the angular coverage in such a Segmental DECT system. The main
difficulty is in solving the limited-angle problem.

Limited angle CT scans widely exist in the real world subjected to the low dose requirement,12 short ex-
posure time13 and other physical limitations. Fundamentally, this kind of scan provides insufficient data for
reconstruction. Many methods have been published for CT reconstruction with insufficient data. A well recog-
nized and successful type is introducing sparsity priors based on the theory of compressed sensing.14 E. Y. Sidky
et al15,16 proposed a reconstruction strategy combining traditional algebraic reconstruction techniques (ART)
with a total-variation (TV) regularization on the image domain.

µ = arg min
µ∈RN

‖µ‖TV s.t. Hµ = p (1)

where µ ∈ RN is the image representing the linear attenuation coefficients of the object,H ∈ RM×N is the system
matrix and p ∈ RM is the projection data. This method can reconstruct a 256×256 Shepp-Logan phantom with
only 20 views. Based on this work, X. Jin et al17 proposed anisotropic total variation (ATV), which showed nice
results for limited-angle problems. H. Gao et al18 explored the coherence of images at multi-energy channels
and proposed a joint sparsity and low rank constraint model. G. H. Chen et al19 applied compressed sensing
to dynamic imaging and developed the prior image constrained compressed sensing (PICCS) method. PICCS is
also used for reconstruction of a slow-kVp-switching DECT .20 K. Kim et al21 designed a patch-based low-rank
penalty for sparse view spectral CT. These methods performs quite well for few-view problems and limited angle
problems with relatively simple structures. We intend to incorporate compressed sensing methods in this work,
aiming at reducing the sampling projections further on by leveraging both the special data structure on DECT
and the popular sparsity constraints.

In this paper, we propose a more flexible DECT scanning strategy by extending the idea of SegMECT.7 Our
new DECT makes one arc of scan at each energy like SegMECT, but the transition region of tube potential
between these two arcs is wider and deposits no X-ray dose. Most importantly, less angular coverage is needed
than SegMECT.7 An additional requirement is that there must exist some conjugate sampling pairs between two
data sets. We refer this new DECT as two-arc DECT (TA-DECT). A novel reconstruction method is designed
for our TA-DECT. In this method, we explore using the artificial neural network to establish a mapping between
the linear attenuation coefficients of two energies, and then cross-estimate the missing projection data of the
two energy channels. Thus we augment the projection data to the range covered by both high-energy and
low-energy X-rays for each energy. The final reconstruction is obtained from the augmented data together with
total-variation constraints. We call this method Mutual Learning and Cross-Estimation (MLCE).

To summarize, our work has the following contributions,

1. We reduce the coverage angle of each energy to 90◦ in DECT, nearly half of that in conventional DECT.

2. We solve the limited-angle problem from a novel view. By studying the relationship between the linear
attenuation coefficients at the two energies, we can recovery part of the data not sampled when scanning,
thus mitigating the limited-angle artifacts to some extent.
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Figure 1: TA-DECT scanning. The transition gap between the scans is for switching a high tube voltage to a
low tube voltage as in practical situation.

The rest of the paper is organized as follows. We present the detailed design of the scanning strategy and
the reconstruction algorithm (MLCE) is described in § 2. We evaluate and discuss our approach with numerical
simulations in § 3. § 4 concludes our work.

2. METHODOLOGY

2.1 Sampling Strategy

We extend the easy-to-implement SegMECT scanning strategy7 to configure a new DECT scan. As shown in
Figure 1, fan-beam projection data are acquired in two arcs. For each arc, either high- or low-energy X-ray is
used. Partial of the data from these two arcs should form a number of conjugate sampling pairs (Figure 4), and
a voltage-transition gap between the two arcs eases the implementation of such a slow-kVp-switching system.
The advantage of such a scan is in four aspects:

1. Reducing the angular coverage of the two arcs could linearly reduce the total dose delivered to a scanned
object;

2. No dosage is delivered during the tube potential change, which means no extra dose besides the X-rays
from two stages of determinant tube potential;

3. The gap between two arcs can be wide enough for X-ray tube to complete the potential change smoothly;

4. This configuration can fit in the situations with physical blockage in completing a full circular rotation.

2.2 Reconstruction Algorithm

Many efforts have been done to model the relationship between attenuation maps under different energies. G.
Hao et al18 modeled the relationship with low rank, and L. Shen et al7 used the similarity of edge structure.
Here, we would like to build a mapping between the projections at different energies,

ϕE1,E2
: pE1

→ pE2
(2)

where pE1
,pE2

denote the projections at energy E1 and energy E2. E1 can be the high energy while E2 the low
energy and vice versa. With this mapping we can cross-estimate missing data to improve final reconstructions.
However, the relationship between projection data at different energies is not apparent. Therefore, we establish
an indirect mappings in image domain and obtain ϕE1,E2

through a forward projection. Let µE1
and µE2

∈ RN
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Figure 2: µE1
7→ µE2

mapping. A mapping is established from a set of d× d templates cropped from µE1
to the

center of the window from µE2
with an artificial neural network. All the pixels in the orange rectangle together

with their neighbors in a d× d window are used to train the neural network.

denoting the images reconstructed from pE1
and pE2

, and ψE1,E2 : µE1
7→ µE2

denote the mapping between the
linear attenuation coefficient images at different energies, we have

pE2
= ϕE1,E2(pE1

) = R(ψE1,E2(R−1(pE1
))) (3)

where R is a projection operator.

In practice, we can perform the mapping ψE1,E2
pixel by pixel,

µE2
(n) = ψE1,E2

(µE1
(n)) (4)

where n indexing a pixel. Therefore ψE1,E2 is actually a mapping of linear attenuation coefficients between
two energies. Ideally speaking, we need two accurate linear attenuation maps for building an exact mapping.
However, those are not available. Hence, we try to study the relationship of linear attenuation coefficients under
different energies from limited information. To increase the adaptivity and robustness, a d× d window including
the neighbors of a pixel n from energy Ei instead of µEi

(n) itself alone is used as the input and the value of
pixel n from energy Ei′ as the target (Figure 2). Thus Eq. 4 becomes

µE2
(n) = ψE1,E2

(µE1
(Ω)) , Ω = Neighbour(n) (5)

The mapping can be established by fitting if the relationship is simple enough. The challenges lie in the fact
that different objects have different linear attenuation coefficients and that the relationship of linear attenuation
coefficients between dual energies does not conform a fixed pattern like linear or quadratic relation. Taking into
consideration all these factors, we use an artificial neural network (ANN)22,23(Figure 3) to study the relationship
online. The images reconstructed from conjugate sampling pairs of both energies serve as µE1

and µE2
for ANN

training.

2.3 Mutual Learning and Cross-Estimation (MLCE) Reconstruction

In our notation, the high energy projection data ph(θ, δ) is acquired over an angular range Rh = [θh1, θh2] and
the low energy one pl(θ, δ) over another angular range Rl = [θl1, θl2], where θ denotes the angle of the central
ray and δ the fan angle from the central ray, as showed in Figure 4.

For the TA-DECT reconstruction, we have

Hhµh = ph (6)

H lµl = pl (7)
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Figure 3: Artificial Neural Network. Each element within the window from µE1
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Figure 4: Illustration of conjugate sampling pairs in fan-beam CT. The projection line S1D1(θ, δ) and S2D2(θ+
π + 2δ,−δ) are conjugate sampling pairs.

where Hh ∈ RMh×N (resp. H l ∈ RMl×N ) is the system matrix for high (resp. low) energy projection,
µh,µl ∈ RN are the attenuation images to be reconstructed, and ph ∈ RMh (resp. pl ∈ RMl) is the projection
data of high (resp. low) energy.

We first establish a mapping of linear attenuation coefficients between dual energies by training our artificial
neural network using the conjugate sampling pairs. Then we cross-estimate the missing projection data with the
trained neural network. With augmented data, we can get better images than those independently reconstructed
from single-energy data. The details are described in the following. The flowchart of our reconstruction method
is presented in Figure 5.

2.3.1 Mapping

As showed in Figure 4, the ray path of S1D1 and S2D2 are exactly the same, i.e.,

p(θ, δ) = p(θ + π + 2δ,−δ) (8)

(θ, δ) and (θ + π + 2δ,−δ) are referred as a conjugate sampling pair. In the design of our scanning strategy, the
existence of conjugate sampling pairs is ensured. Let pcgsh and pcgsl denote the conjugate sampling pairs from
high or low energy projections. We use pcgsh and pcgsl to reconstruct images µcgs

h ,µcgs
l , which are the training

data for ANN to establish the dual-energy mappings.

Though degraded heavily by severe artifacts, µcgs
h and µcgs

l share the same structure of the object as well
as same artifacts. They also contain the information of intensity difference in each pixel, which hopefully will



Figure 5: Chain of processing steps in Mutual Learning and Cross-Estimation (MLCE)



be implicitly modeled by the mapping. Therefore, two mappings ψEh,El
: µh → µl and ψEl,Eh

: µl → µh are
established in our reconstruction method (schematically illustrated in Figure 2 and Figure 3 ).

2.3.2 Estimation of Missing Projections

After the ANN learns the dual-energy mappings, we implement a pre-reconstruction, which independently gets
initiative estimation of attenuation image from projection data of each energy, using the reconstruction algorithm
OSSART24 + TV.15

µinit
h = arg min

µh

‖µh‖TV s.t. Hhµh = ph (9)

µinit
l = arg min

µl

‖µl‖TV s.t. H lµl = pl (10)

The reconstruction µinit
h we obtain is from data covering the angular range Rh, where the low-energy projec-

tion data is lacking. As we have the mapping ψEh,El
: µh → µl, we can estimate the attenuation image of low

energy,
µ̂crs

l = ψEh,El
(µinit

h ) (11)

Let p̂crsl denote our estimation of the low-energy projection data at the views of Rh, we have

p̂crsl = Hhµ̂
crs
l (12)

In the same way, the high-energy image in the angular range Rl is also estimated,

µ̂crs
h = ψEl,Eh

(µinit
l ) (13)

With a fan-beam projection, we get

p̂crsh = H lµ̂
crs
h (14)

Thus, we have estimated the projection of low energy over the angular range Rh and the projection of high
energy over the angular range Rl. Let pwhole

h and pwhole
l denote the whole data on Rl and Rh,

pwhole
h =

(
ph
p̂crsh

)
pwhole
l =

(
p̂crsl

pl

)
(15)

This estimation almost doubles the projection data compared with the data acquired, thus could greatly help us
to improve the image quality of reconstruction.

2.3.3 Reconstruction with augmented data

With the augmented data pwhole
h and pwhole

l , we reconstruct the final results. Because the following processing
is for both low and high energy data, we omit the subscriptions in the equations and expressions here. Let

H =

(
Hh

H l

)
(16)

we have
Hµ = pwhole (17)

We solve Eq. 17 with a TV regularization.

arg min
µ

‖µ‖TV s.t. Hµ = p (18)

Methods to solve Eq. 18 are reported by many aricles.15,16



(a) Dental phantom (b) Energy spectra

Figure 6: Experimental setup. (a) is the dental phantom and (b) is the spectra of high energy 120kVp and low
energy 90kVp for this study.

Figure 7: Overall TA-DECT sinogram of limited angle projections. Range Vhigh = [0◦, 90◦) is covered by the
high-energy projections and Range Vlow = [120◦, 210◦) is covered by the low-energy ones.

3. EXPERIMENTAL STUDY

We conducted a simulation study on a numerical dental phantom (Figure 6(a)) to validate our DECT recon-
struction method based on Mutual Learning and Cross-Estimation (MLCE).

Fan-beam projections with slight noise under two X-ray energy spectra as shown in Figure 6(b) are simulated.
Overall, 960 detectors are aligned on a 300 mm line. The field of view (FOV) is 200 mm×200 mm. The distance
between the source and the center of FOV is 500 mm. The distance from the center of FOV to the linear
detectors is 300 mm. For complete data in each energy, the projection data was acquired over 0◦ ∼ 360◦ with
an increment of 1◦. The data in the range Rh of the high-energy data and Rl of the low-energy data are picked
for TA-DECT. In this study, we set Vhigh = [0◦, 90◦), Vlow = [120◦, 210◦), leaving a 30◦ gap for voltage switch.
The resulting sinogram in total from TA-DECT are shown in Figure 7.

An accurate training using the neural network is a pre-request for cross estimation of projection data. The
number of conjugate sampling pairs for training and the size of inputs of the neural network should be taken into
consideration. More conjugate sampling pairs enable better training, but cause less available projection data in
our final reconstruction because of our sampling strategy and reconstruction method. Therefore, trade off should
be made to use less conjugate sampling pairs while keeping a good training. The basic request for a good training
is that images reconstructed from conjugate pairs (µcgs

l ,µcgs
h ) have an approximal relationship and preserve some

edge details. Experiments were conducted to determine the proper number of conjugate sampling pairs. We
experimented on 11%, 22%, 33%, 44% projection pairs forming conjugate sampling pairs for reconstruction. As
shown in Figure 8, 33% projection pairs are enough for an acceptable approximation.



Figure 8: Conjugate Sampling Pair Reconstruction. Upper row: High energy, Lower row: Low energy; From
left to right: reconstruction using 11%, 22%, 33%, 44% pairs of views forming conjugate sampling pairs. Display
window:[0, 0.07]mm−1.

Figure 9: Reconstruction from DECT scans. Upper row: results of high energy. Bottom row: results of low
energy. From left to right: OS-SART with complete data, independent OS-SART+ATV, Q-TV, MLCE with
data range Vhigh = [0◦, 90◦), Vlow = [120◦, 210◦). Display window:[0, 0.085]mm−1. For the zoom-in teeth ROI, the
display window is [0.03, 0.085]mm−1. For the zoom-in soft tissue ROI, the display window is [0.015, 0.025]mm−1.

.

If the training data for the neural network and the pre-reconstruction data for estimation are perfect, a 1× 1
window will yield the best performance. However, as both data are imperfect in our method, a d × d, d > 1
window may be more feasible, but a large d will cause blur in output images. We experimented on different



(a) Profiles at high energy.

(b) Profiles at low energy.

Figure 10: Profiles of the reconstructions along the red line as indicated in the left image. In most areas,
the profile of reconstructions from MLCE is the closest to the reference. On the contrary, the independent
OS-SART+ATV and Q-TV reconstructions lose some edge details and are heavily affected by limited angle
artifacts.



Figure 11: DECT decomposition of bones and soft tissues. Upper row: Bone images. Bottom row: Soft tissue
images. From left to high: OS-SART with complete data, independent OS-SART+ATV, Q-TV, MLCE with
data range Vhigh = [0◦, 90◦), Vlow = [120◦, 210◦). Display window:[−0.05, 0.25]cm−1

window size: 1 × 1, 3 × 3, 5 × 5 for the input of our neural network. 33% projection pairs forming conjugate
sampling pairs were used for training and right-angled projections at dual energies are used for testing. The
rooted mean square error (RMSE) are shown in Table 1. The 3× 3 window performs best.

Table 1: Rooted mean square error of mapping with different window sizes.
Mapping 1× 1 3× 3 5× 5
ϕ : pl → ph 0.048 0.035 0.046
ϕ : ph → pl 0.023 0.023 0.032

Based on our experimental results, the neural network we used had two hidden layers, both with 10 nodes.
33% projections at both energies forming conjugate pairs were used for training the neural network. The window
size for training ANN was 3× 3. OS-SART together with a TV constraint was used for our final reconstruction.
We set relaxation factor λ = 0.8, the number of iterations N = 100. For TV regularization, the number of
iterations NTV = 20, the gradient descent speed α = 0.2. The grids of reconstruction image were 512× 512.

We compared our algorithm with the Q-TV method7 and independent reconstruction (OS-SART+ATV)17

for each-energy given the same projection data. The results from projections within Vhigh = [0◦, 90◦) and
Vlow = [120◦, 210◦) are presented in Figure 9. In the figure, the top row presents the images reconstructed
from the high-energy projection data and the bottom row from the low-energy projection data. From left to
right columns are the images reconstructed by OS-SART with complete data, independent reconstruction using
OS-SART+ATV, Q-TV and our MLCE reconstruction with TA-DECT data. Figure 10 show the profiles along
the red lines in the left images at both energies. We further examined the material decomposition using these
attenuation image pairs. The basis-material decomposition method same as in7 was used. The resulting images
of bones and soft tissue components from the image pairs in Figure 9 are shown in Figure 11. Obviously, the error
in attenuation images is further amplified in the component images. In both OS-SART+ATV reconstruction
and Q-TV reconstruction cases, component images are biased by significant limited angle artifacts though TV
regulation smooth the noise. Compared to them, our MLCE reconstruction gives much accurate information of
the bones and soft tissue composition.



Figure 12: Comparison of reconstruction under different view configuration. From left to right are results
from Case I (Vhigh = [1◦, 90◦], Vlow = [121◦, 210◦]), case II (Vhigh = [31◦, 120◦], Vlow = [151◦, 240◦]), case III
(Vhigh = [61◦, 150◦], Vlow = [181◦, 270◦]), case IV (Vhigh = [91◦, 180◦], Vlow = [211◦, 300◦]), case V (Vhigh =
[121◦, 210◦], Vlow = [241◦, 330◦]), and case VI (Vhigh = [151◦, 240◦], Vlow = [271◦, 360◦].

To evaluate the robustness of our method at different sampling views. We examine six different sampling
configurations with the first sampling view set as (Vhigh = [1◦, 90◦], Vlow = [121◦, 210◦]) and the others a 30◦

shift of its right previous one. The reconstruction results under these view settings are shown in Figure 12. In
all six cases, the blurred directions and regions are different. This is because the data insufficiency happens in
different directions. When scanning, people can configure the view settings so that the blurring does not emerge
along the important directions.

4. DISCUCSSION AND CONCLUSION

This paper presented a new scanning strategy for DECT to reduce the data requirement and ease DECT im-
plementation. Compared to a common DECT, more that 50% of data, which could also mean dose reduction,
are saved based on our new MLCE reconstruction method. The main idea is to use a mutual learning strategy
based on artificial neural network to solve the problem of reconstruction from limited-angle projections. As the
data acquisition strategy for this algorithm is easy to implement with no items like energy-dispersive detectors
and fast-kVp-switching sources, it is very promising in practical applications.

The proposed method is numerically tested on a dental phantom. The results demonstrated that our method
is superior to independent OS-SART+ATV reconstruction with each energy projection data and the Q-TV
method. The general regularizations like TV and ATV constraints does not yield good results for such a limited-
angle problem. In the dental CT reconstruction, OS-SART+ATV suffers blurring artifacts along the directions
where no X-ray goes perpendicularly through it. Some tiny bones are doomed to be blurred instead of being
preserved by TV regularization. Q-TV loses its power when no good structural prior is available. The significant
information missing because of the severe insufficiency of angular views, is very hard to repair with these general
prior information and constraints, especially for objects with complex structures.

Considering this, our work deals with the limited-angle reconstruction problem by augmenting the projection
data. For Vhigh = [0◦, 90◦), Vlow = [120◦, 210◦), the data are insufficient,10,11 and thus we suffer blurring artifacts
along the directions of the gap [90◦, 120◦). However, with a 150◦ angular range covered, it is much better than
the angular coverage from a single energy projection which is only 90◦. Therefore, our MLCE method is more
accurate, which is helpful to gain good material decomposition images (Figure 11).

Moreover, our MLCE method is compatible with other compressed sensing methods. It can be regarded
as a pre-processing step. In our experiment, the TV constraint is used because the angular coverage by two
arcs together is still insufficient. However, the TV constraint could be unnecessary when angular coverage of
augmented data is sufficient.



Obtaining the relationship between the linear attenuation coefficients of two energies accurately is the key
of our method. This relationship is not linear and does not have explicit regularity because of the complexity
and uncertainty of materials in scanned objects. Therefore, we use the artificial neural network to learn this
relationship online, which requires conjugate sampling pairs in the projection data. The idea can be easily
extended to other imaging geometry such as few-view as long as conjugate sampling pairs available. Neural
network is a powerful tool for nonlinear mapping. We use a neural network with two hidden layers and 10 nodes
in each layer in this study. Further work can be done to design a more efficient neural network custom for the
mapping in DECT or even multi-energy CT.
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