LOCK-FREE PARALLEL SGD ON DENSE DATA HUAYU ZHANG, FAN GAO } UNIVERSITY OF WISCONSIN-MADISON

INTRODUCTION

- We conduct an initial study on lock-free algorithms for dense data.
- Data is partitioned randomly and based on correlation.
- Implementation of the hogwild algorithm and a basic evaluation platform.
- Theoretical proof of the convergence

HOGWILD

Algorithm 1: Hogwild

Input: $D = \{(x_i, y_i)\}_{i=1}^n$: data, *P*: number of cores, *T*: number of iterations, γ : learning rate

Output: *w*: model parameters (shared) **Data:** (D_1, D_2, \ldots, D_P) : partitioned data

Initialize *w*;

 $(D_1, D_2, \ldots, D_P) \leftarrow \text{partition}(D);$ for i = 1 to P do create_thread(serialSGD,w, $D_i, \gamma, T/P$;

end

wait all threads; return *w*;

Algorithm 2: Serial SGD

Input:	$D = \{(x_i, y_i)\}_{i=1}^n$: data, T:
	number of iterations, γ : learning
	rate, w: model parameters

Data: *g*: gradient, *s_i*: uniformly sampled from [n]

```
for i = 1 to n do
   s_i \leftarrow uniformly\_sample([n]);
```

$$\boldsymbol{g} \leftarrow \texttt{compute_grad}(\boldsymbol{w}, \boldsymbol{x}_{s_i}, y_{s_i})$$
;

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \gamma \boldsymbol{g};$$

end

DATA PARTITION

Partition $D = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ to k balanced subgroups $\{D_1, D_2, \ldots, D_k\}$.

• Random partition

• Correlation-based partition

• Correlation graph $G = (V, E), V = [n], E = \{e_{ij} = <$

EXPERIMENTS

 $\log \frac{\epsilon_i}{\epsilon_0} \le 10^{-20}$

Randomly shuffle the indexes and assign $i \in [n]$ to group $D_i, j = \mod(i, k)$.

• Simulation Model $\boldsymbol{y} = \boldsymbol{X} \boldsymbol{w}. \ \boldsymbol{x}_i \in \mathcal{N}(0, \boldsymbol{I}).$ Given $(\boldsymbol{X}, \boldsymbol{y})$, estimate $\hat{\boldsymbol{w}}$. $\boldsymbol{X} \in \mathbb{R}^{5000 \times 200}$

Figure 1: Loss vs. iterations

Figure 2: Speed up. The time elapsed when reach-

$\boldsymbol{x}_i, \boldsymbol{x}_j >: i, j \in [n], i < j$

- Choose the partition by maximizing the intra-group correlation and minimizing the inter-group correlation.
- Greedy algorithm: pick the vertex *i* and group *p* with minimum

$$\sum_{j=0, j\neq p}^{n} \sum_{l\in D_{j}} e_{il} - \sum_{l\in D_{p}} e_{il}$$

to D_{p} . Complexity: $O(k \mid E \mid +$

• **MNIST** Hand write digit classification

Figure 3: Loss vs. iterations

Threads	2	4	8
intra	38.01	41.32	44.20
inter	31.57	32.62	33.45

Table 1: Average inter and intra correlation after partition

Threads	1	2	4
random	0.858	0.872	0.878
correlation	0.873	0.860	0.842

Table 2: Classification accuracy

. Add *i* $|V|^2$).

CONVERGENCE

Assumptions in the main theorem,

- *f* is bounded by *C*.
- *f* is *m* strongly convex.
- Uniform bound on stochastic gradient assumption:

 $\mathbb{E} \|\nabla f_s(w)\|^2 \le M^2$

• Low inter-group correlation assumption: in each partitioned data, $\langle x_i, x_j \rangle \leq$

Theorem. If the number of samples that overlap in time with a single sample during the execution of our algorithm is bounded as

$$\tau = O\left(M^2 \cdot \min\left\{\frac{1}{\epsilon m^2}, \frac{1}{\delta C^2}\right\}\right),\,$$

our algorithm with the step size $\gamma = \epsilon m/M^2$, after

$$T = O\left(\frac{M^2 \log\left(\Delta_1/\epsilon\right)}{\epsilon m^2}\right)$$

iterations, obtains $\mathbb{E}(\Delta_{T+1}) \leq \epsilon$, where Δ_k denotes the distance between the *k*-th iterate and the optimum i.e. $\Delta_k = ||w_k - w^*||^2$.

CONCLUSION

- Hogwild converges even on dense data.
- The convergence rate of parallel SGD is slower than that of serial SGD, but a slight gain in speedup is achievable.
- The partition algorithm based on correlation does not accelerate the convergence significantly.