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INTRODUCTION

• We conduct an initial study on lock-free al-
gorithms for dense data.

• Data is partitioned randomly and based on
correlation.

• Implementation of the hogwild algorithm
and a basic evaluation platform.

• Theoretical proof of the convergence

HOGWILD

Algorithm 1: Hogwild
Input: D = {(xi, yi)}ni=1: data, P :

number of cores, T : number of
iterations, γ: learning rate

Output: w: model parameters (shared)
Data: (D1, D2, . . . , DP ): partitioned data

Initialize w;
(D1, D2, . . . , DP )← partition (D);
for i = 1 to P do

create_thread (serialSGD, w,
Di, γ, T/P );

end
wait all threads;
return w;

Algorithm 2: Serial SGD
Input: D = {(xi, yi)}ni=1: data, T :

number of iterations, γ: learning
rate, w: model parameters

Data: g: gradient, si: uniformly sampled
from [n]

for i = 1 to n do
si ← uniformly_sample([n]);
g ← compute_grad(w,xsi , ysi );
w ← w − γg;

end

CONVERGENCE
Assumptions in the main theorem,

• f is bounded by C.

• f is m strongly convex.

• Uniform bound on stochastic gradient
assumption:

E‖∇fs(w)‖2 ≤M2

• Low inter-group correlation assump-
tion: in each partitioned data, 〈xi, xj〉 ≤
δ.

Theorem. If the number of samples that over-
lap in time with a single sample during the ex-
ecution of our algorithm is bounded as

τ = O

(
M2 ·min

{
1

εm2
,

1

δC2

})
,

our algorithm with the step size γ = εm/M2,
after

T = O

(
M2 log (∆1/ε)

εm2

)
iterations, obtains E(∆T+1) ≤ ε, where ∆k de-
notes the distance between the k-th iterate and
the optimum i.e. ∆k = ‖wk − w∗‖2.

DATA PARTITION

Partition D = {(xi, yi)}ni=1 to k balanced
subgroups {D1, D2, . . . , Dk}.

• Random partition
Randomly shuffle the indexes and assign
i ∈ [n] to group Dj , j = mod (i, k).

• Correlation-based partition

◦ Correlation graph
G = (V,E), V = [n], E = {eij =<

xi,xj >: i, j ∈ [n], i < j}

◦ Choose the partition by maximizing the
intra-group correlation and minimizing
the inter-group correlation.

◦ Greedy algorithm: pick the vertex i and
group p with minimum∑k

j=0,j 6=p

∑
l∈Dj

eil −
∑

l∈Dp
eil. Add i

to Dp. Complexity: O(k | E | + | V |2).

CONCLUSION

• Hogwild converges even on dense data.

• The convergence rate of parallel SGD is
slower than that of serial SGD, but a slight
gain in speedup is achievable.

• The partition algorithm based on correla-
tion does not accelerate the convergence
significantly.

EXPERIMENTS

• Simulation Model y = Xw. xi ∈ N (0, I).
Given (X,y), estimate ŵ. X ∈ R5000×200
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Figure 1: Loss vs. iterations

1 2 3 4 5 6 7 8
iterations

1.0

1.2

1.4

1.6

1.8

sp
e
e
d
 u

p

random

corr

Figure 2: Speed up. The time elapsed when reach-
ing εi

ε0
≤ 10−20

• MNIST Hand write digit classification
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Figure 3: Loss vs. iterations
Threads 2 4 8

intra 38.01 41.32 44.20
inter 31.57 32.62 33.45

Table 1: Average inter and intra correlation after
partition

Threads 1 2 4 8
random 0.858 0.872 0.878 0.891

correlation 0.873 0.860 0.842 0.865

Table 2: Classification accuracy


